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Abstract

Rankcluster is the �rst R package proposing both modelling and clustering tools for
ranking data, potentially multivariate and partial. Ranking data are modelled by the
Insertion Sorting Rank (isr) model, which is a meaningful model parametrized by a
central ranking and a dispersion parameter. A conditional independence assumption
allows to take into account multivariate rankings, and clustering is performed by the
mean of mixtures of multivariate isr model. The clusters' parameters (central rankings
and dispersion parameters) help the practitioners in the interpretation of the clustering.
Moreover, the Rankcluster package provides an estimation of the missing ranking posi-
tions when rankings are partial. After an overview of the mixture of multivariate isr

model, the Rankcluster package is described and its use is illustrated through two real
datasets analysis.

Keywords: model-based clustering, multivariate rankings, partial rankings, R,
Rankcluster.

All results from sections 4 and 5 were obtained with Rankcluster 0.91.6.
Since Rankcluster 0.92, the data format has changed: ranks must be pro-
vided in their ranking representation (and not ordering representation). This
change was made to manage tied objects.

1. Introduction

Ranking data occur when a number of subjects are asked to rank a list of objects
according to their personal preference order. Such data are of great interest in human
activities involving preferences, attitudes or choices like Psychology, Sociology, Politics,

∗Corresponding author. Tel.: +33 320 436 760, Fax: +33 320 434 302
Email addresses: julien.jacques@polytech-lille.fr (Julien Jacques1,2),

quentin.grimonprez@inria.fr (Quentin Grimonprez2),
christophe.biernacki@math.univ-lille1.fr (Christophe Biernacki1,2)

Preprint submitted to Elsevier November 13, 2024



Marketing, etc. For instance, the voting system single transferable vote occurring in Ire-
land, Australia and New Zeeland, is based on preferential voting (Gormley and Murphy,
2008). In a lot of applications, the study of ranking data discloses heterogeneity, due
for instance to di�erent political meanings, di�erent human preferences, etc.

Recently, Jacques and Biernacki (2012) proposed a model-based clustering algorithm
in order to analyse and explore such ranking data. This algorithm is able to take into
account multivariate rankings with potential partial rankings (when a subject did not
rank all the objects). To the best of our knowledge, this is the only clustering algorithm
for ranking data with a so wide application scope. This algorithm is based on an exten-
sion of the Insertion Sorting Rank (isr) model (Biernacki and Jacques, 2013) for ranking
data, which is a meaningful and e�ective model obtained by modelling the ranking gen-
erating process assumed to be a sorting algorithm. The isr model is parametrized by a
location parameter (the modal ranking) and a dispersion parameter. The heterogeneity
of the rank population is modelled by a mixture of isr whereas conditional indepen-
dence assumption allows the extension to multivariate rankings. Maximum likelihood
estimation is performed through a SEM-Gibbs algorithm, in which partial rankings are
considered as missing data, what allows to simulate them during the estimation process.

This algorithm has been implemented in C++ and is available through the Rankclus-
ter package for R, available on R-forge (and soon on the CRAN website) and presented
at long in the sequel of this paper.

The paper is organised as follows: Section 2 brie�y presents the clustering algorithm
proposed in Jacques and Biernacki (2012). Section 3 describes the existing R pack-
ages dedicated to ranking data, whereas Section 4 discusses the functionalities of the
Rankcluster package. Section 5 illustrates the use of Rankcluster through the cluster
analysis of two datasets: 1. Fligner and Verducci's words univariate dataset without
any missing ranking positions (Fligner and Verducci, 1986), and 2. the rankings of the
Big Four of English Football (Manchester United, Liverpool, Arsenal and Chelsea) ac-
cording to the Premier League results and to their UEFA coe�cients between 1993 and
2013 (bivariate dataset with missing ranking positions).

2. Overview of the model-based clustering algorithm

This section gives an overview of the model-based clustering algorithm for multivari-
ate partial rankings proposed in Jacques and Biernacki (2012). It relies on the univariate
isr model that we introduce �rst.

2.1. The univariate ISR model

Rank data arise when judges or subjects are asked to rank several objects O1, . . . ,Om

according to a given order of preference. The resulting ranking can be designed by its
ordering representation x = (x1, . . . , xm) ∈ Pm which signi�es that Object Oxh is the
hth (h = 1, . . . ,m), where Pm is the set of the permutations of the �rst m integers.
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Based on the assumption that a rank datum is the result of a sorting algorithm based
on paired comparisons, and that the judge who ranks the objects uses the insertion sort
because of its optimality properties (minimum number of paired comparisons), Biernacki
and Jacques (2013) state the following so-called isr model:

p(x;µ, π) =
1

m!

∑
y∈Pm

p(x|y;µ, π) = 1

m!

∑
y∈Pm

πG(x,y,µ)(1− π)A(x,y)−G(x,y,µ), (1)

where

� µ ∈ Pm, the modal ranking, is a location parameter. Its opposite ranking µ̄
(µ̄ = µ ◦ ē with ē = (m, . . . , 1)) is the rank of smallest probability,

� π ∈ [1
2
, 1], which is the probability of good paired comparison according to µ in

the sort algorithm, is a scale parameter : the distribution is uniform when π = 1
2

and the mode µ of the distribution is uniformly more pronounced when π grows,
being a Dirac in µ when π = 1,

� the sum over y ∈ Pm corresponds to all the possible initial presentation orders of
the objects to rank (with identical prior probabilities equal to 1/m!),

� G(x, y, µ) is equal to the number of good paired comparisons during the sorting
process leading to return x when the presentation order is y,

� A(x, y) corresponds to the total number of paired comparisons (good or wrong).

The accurate de�nitions of G(x, y, µ) and A(x, y) can be found in Biernacki and Jacques
(2013).

2.2. Mixture of multivariate ISR

Let now rede�ne x = (x1, . . . , xp) ∈ Pm1 × . . .×Pmp as a multivariate rank, in which
xj = (xj1, . . . , xjmj) is a rank of mj objects (1 ≤ j ≤ p).

The population of multivariate ranks is assumed to be composed of K groups in
proportions pk (pk ∈ [0, 1] and

∑K
k=1 pk = 1). Given a group k, the p components

x1, . . . , xp of the multivariate rank datum x are assumed to be sampled from independent
isr distributions with corresponding modal rankings µ1

k, . . . , µ
p
k (each µj

k ∈ Pmj
) and

good paired comparison probabilities π1
k, . . . , π

p
k ∈ [1

2
, 1].

The unconditional probability of a rank x is then

p(x;θ) =
K∑
k=1

pk

p∏
j=1

1

mj!

∑
y∈Pmj

p(xj|y;µj
k, π

j
k), (2)

where θ = (πj
k, µ

j
k, pk)k=1,...,K ,j=1,...,p and p(xj|y;µj

k, π
j
k) is de�ned by (1).

Each component xj of x can be full or partial. Frequently, the objects in the top
positions will be ranked and the missing ones will be at the end of the ranking, but our
model does not impose such situation and is able to work with partial ranking whatever
are the positions of the missing data (see details in Jacques and Biernacki (2012)).
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2.3. Estimation algorithm

Let x = {x1, . . . , xn} be a sample of n multivariate rankings, and z = {z1, . . . , zn}
the corresponding latent cluster memberships. Let Ǐji and Îji be respectively the sets
of indices of observed and unobserved positions in the jth component xj

i of the ith
observation xi. Similarly, let x̌j

i and x̂j
i correspond to the previous notations for the jth

component of the ith observation, x̌i = {x̌1
i , . . . , x̌

p
i } and x̂i = {x̂1

i , . . . , x̂
p
i }. Let also

de�ne x̌ = {x̌i; i = 1, . . . , n} and x̂ = {x̂i; i = 1, . . . , n}. Finally yi = (y1i , . . . , y
p
i ) ∈

Pm1 × . . . × Pmp denotes the presentation orders of the objects for the ith observation
and y = {y1, . . . , yn}.
Assuming that triplets (xi, yi, zi) arise independently (i = 1, . . . , n), the observed-data
log-likelihood of model (2) is:

l(θ; x̌) =
n∑

i=1

ln

 K∑
k=1

pk

p∏
j=1

1

mj!

∑
y∈Pmj

∑
x∈X j

i

p(x|y;µj
k, π

j
k)

 ,

where X j
i = {x ∈ Pmj

: xh = x̌jh
i , ∀h ∈ Ǐji } is the set of all the rankings compatible with

the observed part x̌j
i of x

j
i .

Maximum likelihood estimation is not straightforward since several missing data
occur: the cluster memberships zi of the observations, the presentation orders yi and the
unobserved ranking positions x̂i (for partial rankings). In such a situation, a convenient
way to maximize the likelihood is to consider an EM algorithm (Dempster et al., 1977).
This algorithm relies on the completed-data log-likelihood, and proceeds in iterating
an E step, in which the conditional expectation of the completed-data log-likelihood is
computed, and a M step, in which the model parameters are estimated by maximizing
the conditional expectation computed in the E step. Unfortunately, the EM algorithm
is tractable only for univariate full rankings with moderate m (m ≤ 7), respectively for
mathematical and numerical reasons. In particular, when partial rankings occur, the E
step is intractable since the completed-data log-likelihood is not linear for all three types
of missing data (refer to Jacques and Biernacki (2012) for its expression). A SEM-Gibbs
approach is then proposed in Jacques and Biernacki (2012) to overcome these problems.

The fundamental idea of this algorithm is to reduce the computational complexity
that is present in both E and M steps of EM by removing all explicit and extensive
use of the conditional expectations of any product of missing data. First, it relies
on the SEM algorithm (Geman and Geman, 1984; Celeux and Diebolt, 1985) which
generates the latent variables at a so-called stochastic step (S step) from the conditional
probabilities computed at the E step. Then these latent variables are directly used in
the M step. Second, the advantage of the SEM-Gibbs algorithm in comparison with
the basic SEM ones relies on the fact that the latent variables are generated without
calculating conditional probabilities at the E step, thanks to a Gibbs algorithm. Refer
to Jacques and Biernacki (2012) for more details.
Let noticed that label switching can occur with the SEM algorithm when clusters are not
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well separated. To avoid this situation, we recommend to use model selection criteria as
BIC (Schwarz, 1978) or ICL (Biernacki et al., 2000) to select the number K of clusters.

3. Existing R packages for ranking data

To the best of our knowledge, there exists only two packages dedicated to the analysis
of ranking data, available on the CRAN website, but none of them seems to work to date.
More important, their announced functionalities are signi�cantly limited in comparison
to our package Rankcluster, as we discuss now:

� pmr package for R: provide some descriptive statistics and modelling tools using
classical rank data models for full univariate ranking data: Luce models, distance-
based models, and rank-ordered logit (refer to Marden (1995) for a description of
these models). Visualization of ranking data using polytopes is also available for
less than four objects to rank (m ≤ 4).
Let note that even after correcting their NAMESPACE �le (by adding the missing
command line exportPattern("^[[:alpha:]]+")) and recompiling their pack-
age, the main function seems to not work even with the proposed examples.

� RMallow package for R: suppose to perform clustering of univariate ranking data
using mixture of Mallows model (Murphy and Martin (2003)).

Rankcluster proposes modelling and clustering tools on the basis of the mixture of
multivariate isr presented model in Section 2. Comparing to the existing packages,
Rankcluster is the only package taking into account multivariate and partial ranking
data.

4. Overview of the Rankcluster functions

This section presents functions from Rankcluster 0.91.6. Since Rankclus-
ter 0.92, the data format has changed: ranks (data parameter) must be
provided in their ranking representation1 (and not ordering representation).
This change was made to manage tied objects.

This section presents, �rstly, the main function rankclust() which performs cluster
analysis, and, secondly, several companion functions which can be helpful for additional
ranking data analysis.

4.1. The main function: rankclust()

Cluster analysis can be performed with the rankclust() function. Illustration of
its use is given in Section 5.

1The ranking representation x−1 = (x−1
1 , . . . , x−1

m ) contains the ranks assigned to the objects, and
means that Object Oi is in the x

−1
i th position (i = 1, . . . ,m). Notice that x is associated to the ordering

representation.

5



4.1.1. Input arguments

This function has only one mandatory argument, data, which is a matrix composed
of the n observed ranks in their ordering representation. For univariate rankings
the number of columns of data is m (default value of argument m). For multivariate
rankings, data has m1 + . . . + mp columns: the �rst m1 columns contain x1 (�rst
dimension), the columns m1 + 1 to m1 +m2 contain x2 (second dimension), and so on.
In this case, the argument m must be �lled with the vector of sizes (m1, . . . ,mj). If the
user works with a ranking2 representation of the ranks, the convertRank() function
can be used to transform ranking representation into ordering one.

The number of clusters (1 by default) can be set up with option K. Vector of numbers
of clusters are possible (for instance K=1:10). In order to select the number of clusters,
two criteria are available: BIC, by default, and ICL, selected by criterion = "icl".

Additionally, several parameters allow to set up the di�erent tuning parameters
(iterations numbers) used in the SEM-Gibbs estimation. Refer to Jacques and Biernacki
(2012) and to rankclust() help for more details. Section 5 gives also some examples of
iterations numbers choices. The option run allows to set the number of initializations
of the SEM-Gibbs algorithm (1 by default). In the case of multiple initializations, the
best solution according to the approximated log-likelihood is retained.

Finally, the computing times (total, for the SE and M steps and for the likelihood
approximation) can be printed by setting the option detail to TRUE (FALSE by default).

4.1.2. Output arguments

The rankclust() function returns an instance of the ResultTab class. Its attributes
will contain 4 slots:

� K: a vector of the number of clusters,

� results: a list of ResultList class, containing the results for each number of
clusters (one element of the list is associated to one number of clusters),

� data: the data used for clustering,

� criterion: the model selection criterion used,

� convergence: a boolean indicating if none problem of empty class has been en-
countered (for any number of clusters).

Each element of the list results contains all the results for a given number K of
classes, which are summarized in the following 18 slots:

2The ranking representation x−1 = (x−1
1 , . . . , x−1

m ) contains the ranks assigned to the objects, and
means that Object Oi is in the x

−1
i th position (i = 1, . . . ,m). Notice that x is associated to the ordering

representation.
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� proportion: a K-vector of proportions p1, . . . , pK ,

� pi: a K× p-matrix composed of the scale parameters πj
k (1 ≤ k ≤ K and 1 ≤ j ≤

p),

� mu: a matrix with K lines and m1 + . . .+mp columns in which line k is composed
of the location parameters (µ1

k, . . . , µ
p
k) of cluster k,

� ll, bic, icl: values of the log-likelihood, BIC criterion and ICL criterion,

� tik: a n×K-matrix containing the estimation of the conditional probabilities for
the observed ranks to belong to each cluster,

� partition: a n-vector containing the partition estimation resulting from the clus-
tering,

� entropy: a n×2-matrix containing for each observation its estimated cluster (col-
umn 2, similar to partition) and its entropy (column 1), de�ned as−

∑K
k=1 tik log(tik)

where tik is the conditional probabilities for the ith observation to belong to cluster
k, given by tik. The entropy output illustrates the con�dence in the clustering
of each observation (a high entropy means a low con�dence in the clustering),

� probability: a n× 2-matrix similar to the entropy output, containing for each
observation its estimated cluster (column 2, similar to partition) and its prob-
ability p(xi;µk, πk) given its cluster. This probability is estimated using the last
simulation of the presentation orders used for the likelihood approximation. The
probability output exhibits the best representative of each cluster.

� convergence: a boolean indicating if none problem of empty class has been en-
countered,

� partial: a boolean indicating the presence of partial rankings,

� partialRank: a matrix containing the full rankings, estimated using the within
cluster isr parameters when the ranking is partial. When ranking is full, partialRank
simply contains the observed ranking. Available only in presence of at least one
partial ranking.

� distanceProp, distancePi, distanceMu: distances between the �nal estima-
tion and the current value at each iteration of the SEM-Gibbs algorithm (except
the burning phase) for respectively: proportions pk, scale parameters πj

k, loca-
tion parameters µj

k. For µj
k, the Kendall distance for ranking has been consid-

ered (Marden, 1995). For pk and πj
k, the distance is the mean squared di�erence.

distanceProp, distancePi and distanceMu are lists of Qsem-Bsem elements, each
element being a K × p-matrix.
These elements are reachable by res[k]@slotname[[iteration]].
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� distanceZ: a vector of size Qsem-Bsem containing the rand index (Rand, 1971)
between the �nal estimated partition and the current value at each iteration of
the SEM-Gibbs algorithm (except the burning phase). Let precise that the rand
index is not a�ected by label switching.

� distancePartialRank: Kendall distance between the �nal estimation of the par-
tial rankings (missing positions in such rankings are estimated) and the current
value at each iteration of the SEM-Gibbs algorithm (except the burning phase).
distancePartialRank is a list of Qsem-Bsem elements, each element being a ma-
trix of size n× p. Available only in presence of at least one partial ranking.

� proportionInitial, piInitial, muInitial, partialRankInitial: initializa-
tions of the parameters in the SEM-Gibbs algorithm (for expert use only).

If res is the result of rankclust(), each slot of results can be reached by res[k]@slotname,
where k is the number of clusters and slotname is the name of the slot we want to reach
(proportion, pi ...). For the slots ll, bic, icl, res[�slotname�] returns a vector
of size K containing the values of the slot for each number of clusters.

4.2. Companion functions

In addition to the main function, rankclust(), several companion functions are
available in Rankcluster :

� convertRank(): converts ranking representation x−1 of a rank to its ordering
representation x, and vice-versa since x ◦ x−1 = x−1 ◦ x.

� criteria(): estimate the log-likelihood, BIC and ICL criteria from a dataset
and a corresponding estimation of the isr model parameters (see details with
help(criteria)).

� distCayley(), distHamming(), distKendall(), distSpearman(): compute usual
distances between rankings (refer to Marden (1995)) for either ranking or ordering
representation (refer to the help of the functions for details),

� frequence(): transform a raw dataset composed of a list of ranks into a matrix
rank/frequency, in which the last column is the frequency of observation of the
rank. Conversely, unfrequence() transform a rank/frequency dataset in a raw
dataset, as requested in input argument of rankclust(),

� khi2(): perform a chi-squared goodness-of-�t tests and return the p-value of the
test (refer to Biernacki and Jacques (2013) for details).

� kullback(): estimate the Kullback-Leibler divergence between two isr models,

� simulISR(): simulate a univariate and unimodal dataset of rankings according to
the isr model,
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5. Rankcluster through examples

All results from this section were obtained with Rankcluster 0.91.6. Since
Rankcluster 0.92, the data format has changed: ranks must be provided in
their ranking representation (and not ordering representation). This change
was made to manage tied objects.

This section illustrates the use of the rankclust() function on two real datasets.
The �rst one, words, is a well-known dataset in ranking study, due to Fligner and
Verducci (1986), which consists of words associations by students. The second one,
big4 consists of the rankings of the Big Four of English Football (Manchester United,
Liverpool, Arsenal and Chelsea) according to the Premier League results and to their
UEFA coe�cients between 1993 and 2013 (see Appendix Appendix A).

5.1. The words dataset

This data was collected under the auspices of the Graduate Record Examination
Board (Fligner and Verducci, 1986). A sample of 98 college students were asked to rank
�ve words according to strength of association (least to most associated) with the target
word "Idea": 1 = Thought, 2 = Play, 3 = Theory, 4 = Dream and 5 = Attention.

Figure 1: Value of the BIC criterion with mixture of isr for the words dataset.

First we start by installing and loading the Rankcluster package:
R> install.packages("Rankcluster")

R> library(Rankcluster)

and then loading the words dataset:
R> data(words)

Using the rankclust() function, a clustering with respectively 1 to 5 clusters is
estimated:
R> res=rankclust(words$data,m=words$m,K=1:5,Qsem=1000,Bsem=100,Ql=500,Bl=50,
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maxTry=20,run=10)

The number of SEM-Gibbs iterations (Qsem) has been set to 1000, with a burning phase
of 100 iterations (Bsem). For likelihood approximation the numbers of iterations (Ql
and Bl) have been divided by two. Option maxTry=20 allows to restart the estimation
algorithm in the limit of 20 times if one cluster becomes empty (frequent for K = 5).
Finally, the SEM-Gibbs algorithm is initialized 5 times (run=5), and the best solution
(according to the approximated likelihood) is retained. Computing time on a laptop
with 2.80GHz CPU is about 3 minutes (7 seconds per run et per number of clusters).
The reader who wants to test more quickly the package can reduced the number of runs.

The values of the BIC criterion, reached by res[�bic�] and plotted on Figure 1,
tend to select three clusters.

The parameter estimation for K = 3 are given below for proportions pk, probabilities
πk and modes µk:
> res[3]@proportion

[1] 0.3061224 0.4918367 0.2020408

> res[3]@pi

dim 1

cl 1 0.9060649

cl 2 0.9416822

cl 3 0.8642753

> res[3]@mu

dim 1

cl 1 2 5 3 4 1

cl 2 2 5 4 3 1

cl 3 5 2 4 3 1

The words Thought is the most associated with Idea for all clusters. Regarding the
rankings of the four other words can suggest an interesting interpretation of the clusters.
Indeed, the �rst cluster, composed of about 30% of the students, is characterized by
the following modal ranking: Play, Attention, Theory, Dream, Thought. Students of
this cluster are probably literary-minded students, rankings the word Dream just after
Thought. Students of the second cluster (about half of total students) are probably
more scienti�c since they rank the word Theory just after Thought, and so before the
word Dream: Play, Attention, Dream, Theory, Thought. This cluster is also the most
homogeneous, with a high scale parameter value (low dispersion): π2 ≃ 0.94. Finally,
the last cluster is characterized by the following mode: Attention, Play, Dream, Theory,
Thought. The only di�erence in the modal ranking with the scienti�c students is the
preference of Play rather than Attention. This cluster, which is the smallest (20% of
the students), can be quali�ed as intermediary cluster, probably composed of a set of
students not too scienti�c or too literary-minded, as evidenced by the smallest of the
three scale parameter values (π3 ≃ 0.86).
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5.2. The big4 dataset

In the two last decades, the English football has been dominated by four clubs,
forming the �Big Four�: Manchester United, Liverpool, Arsenal and Chelsea. In this
application, we analyse the rankings of these four teams at the English championship
(Premier League) and their rankings according to the UEFA coe�cients. This coe�cient
is an European statistic on football teams based on the results of European football
competitions and used for ranking and seeding teams in international competitions.
The big4 dataset is composed of Premier League rankings and UEFA rankings from
1993 to 2013, in ordering notation (see Table A.2 in Appendix Appendix A, in which
club �1� is Manchester United, �2� is Liverpool, �3� is Arsenal and �4� is Chelsea). In
2001 Arsenal and Chelsea had the same UEFA coe�cient and then are tied for the
�rst ranking dimension. With Rankcluster, one way to take into account such tied in
ranking data is to consider the corresponding ranking positions as missing: the UEFA
ranking becomes then (1, 0, 0, 2) for 2001, what means that Manchester United is the
�rst, Liverpool is the last, and the two intermediate positions are for Arsenal and Chelsea
in an unknown order.

First, the big4 dataset is loaded:
R> data(big4)

Clustering for 1 to 3 clusters is estimated with rankclust() function in about 25 sec-
onds on a laptop 2.80GHz CPU (less than 2 seconds per run and per number of clusters):
R> res=rankclust(big4$data,m=big4$m,K=1:3,Qsem=1000,Bsem=100,Ql=500,Bl=50,

maxTry=20,run=5)

The values of the BIC criterion are plotted on Figure 2, and tend to select two
groups.

Figure 2: Values of the BIC criterion with mixture of isr for the big4 dataset.

The printed outputs for K = 2 are given below: value of the log-likelihood (ll), val-
ues of BIC and ICL criteria, estimation of the proportions pk's, the dispersion parameters
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πj
k's, the location parameters µj

k's, the estimated partition and �nally the conditional
probability of the observations to belong to each cluster (tik).
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R> res[2]

******************************************************************

Number of clusters: 2

******************************************************************

ll= -108.5782

bic = 244.5571

icl = 253.5601

proportion: 0.3854034 0.6145966

mu:

dim1 dim2

cl1 1 3 2 4 1 3 2 4

cl2 1 4 2 3 1 4 3 2

pi:

dim1 dim2

cl1 0.9698771 0.7759781

cl2 0.6945405 0.7707101

partition:

[1] 2 1 1 1 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2

tik:

[, 1] [, 2]
[1, ] 6.280426e-01 0.371957427

[2, ] 9.933149e-01 0.006685094

[3, ] 9.565052e-01 0.043494814

[4, ] 9.923445e-01 0.007655450

[5, ] 6.609592e-01 0.339040841

[6, ] 9.916482e-01 0.008351815

[7, ] 1.215925e-03 0.998784075

[8, ] 3.500066e-01 0.649993363

[9, ] 3.441535e-02 0.965584647

[10, ] 4.063712e-01 0.593628767

[11, ] 9.589745e-01 0.041025518

[12, ] 9.751644e-01 0.024835551

[13, ] 6.806917e-02 0.931930833

[14, ] 3.175113e-03 0.996824887

[15, ] 1.263591e-03 0.998736409

[16, ] 7.713598e-06 0.999992286

[17, ] 9.115424e-04 0.999088458

[18, ] 1.734860e-01 0.826513968

[19, ] 1.605939e-04 0.999839406

[20, ] 7.425989e-02 0.925740107

[21, ] 2.171738e-02 0.978282624
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******************************************************************

The estimated clustering exhibits two groups, the second one being larger than the
�rst one (p1 ≃ 0.39 and p2 ≃ 0.61). The values of the location parameters for each
cluster and dimension leads to two interesting remarks. First, the ranking in each
dimension is very similar in both clusters: exactly the same for cluster 1 and just one
transposition in the last two positions for cluster 2. This means that the performance of
the clubs at the Premier League is highly correlated with their UEFA rankings, which
is related to the results of the clubs in the European competitions over the previous �ve
seasons. This �rst comment shows a certain inertia in the performance of the clubs.
Secondly, the distinction between the two clusters is essentially due to the position of
the club �4�, Chelsea: indeed, in the �rst cluster Chelsea is the last in both rankings,
but it is in second position in the second cluster. Moreover, on the partition, we �nd
that cluster 2 is mainly present in the second half of the period 1993-2013 (see for
instance the conditional probabilities of cluster membership on Figure 3). This rise of
Chelsea's results can be explained by the acquisition of the club by a Russian investor
(Abramovich) in 2003, who brought great players in the club.

Figure 3: Conditional probabilities for each observation (year) to belong to cluster 1 (black circle) and
two (red �lled circle).

In addition to this information, the summary() function gives an overview of the
partition by printing the �ve ranks of highest probability and the �ve ranks of highest
entropy for each cluster:
R> summary(res)

The ranks of highest probability are the best representatives of the cluster, whereas the
ranks of highest entropy are those for which their membership to the cluster are the
less obvious. Notice that the full list of the cluster member with their probability and

14



entropy are available through the slots probability and entropy. Table 1 gives an
example of these outputs for cluster 2. The rankings of 2011 are the most representative
of the cluster, and the �ve most representatives of the cluster correspond to rankings
after 2003. Similarly, the four observations whose membership to cluster 2 is the most
questionable correspond to observations before 2003. This information con�rms the
previous analysis indicating that cluster 2 is due to the advent of Chelsea in the �rst
positions.

year UEFA Prem. League entropy
2002 (1,3,4,2) (3,2,1,4) 0.6755106
1993 (1,2,3,4) (1,2,3,4) 0.6599892
2000 (1,4,3,2) (1,3,2,4) 0.6474507
1997 (1,2,3,4) (1,3,2,4) 0.6403972
2010 (1,0,0,4) (4,1,3,2) 0.4613709
year UEFA Prem. League probability
2011 (1,4,2,3) (1,4,3,2) 2.367e-04
2008 (4,2,3,1) (1,4,3,2) 6.862e-05
2013 (4,1,3,2) (1,4,3,2) 3.529e-05
2009 (4,2,1,3) (1,2,4,3) 3.097e-05
2005 (1,2,3,4) (4,3,1,2) 2.151e-05

Table 1: Rankings with the highest entropies and probabilities in the second cluster.

The summary() function prints also the estimated full ranking for each partial rank-
ing. For instance, in 2001 Arsenal and Chelsea had the same UEFA coe�cient, and
when asking to our model to di�erentiate these two teams, Arsenal is ranked before
Chelsea, what is not surprising as we already remarked that the results of Chelsea were
generally among the worst of the Big Four before 2003.

Finally, the variability of estimation of the model parameters can be achieved by
the mean of the distances between the �nal estimation and the current value at each
step of the SEM-Gibbs algorithm (refer to Jacques and Biernacki (2012) for accurate
de�nitions of these distances). These distances are available in the slots distanceProp,
distancePi, distanceMu of the output res[2]. The standard deviation of these dis-
tances can be used for instance as an indicator of estimation variability. For instance,
the standard deviation of the Kendall distance between the �nal estimation of the lo-
cation parameters and its current value at each step of the SEM-Gibbs algorithm is for
cluster 2: 0.52 for the UEFA coe�cients rankings and 0.43 for Premier League rankings.
Similarly, the standard deviation of the dispersion parameters estimations is for cluster
2 about 0.002 for both the UEFA coe�cients and the Premier League rankings. Let note
that these variabilities are relatively small, due to the low overlapping of the two clusters
(dispersion coe�cients are quite high). In a similar way, the slot distancePartition
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illustrates the convergence of the SEM-Gibbs algorithm by given the rand index between
the �nal partition and the current partition at each SEM-Gibbs iteration (Figure 4).

Figure 4: Evolution of the partition along with the SEM-Gibbs iterations: values of the Rand index
between current and �nal partitions.

6. Conclusion

Rankcluster is the �rst R package dedicated to ranking data, allowing modelling and
cluster analysis for multivariate partial ranking data. Available on R-forge, this package
is simple of use with its main function, rankclust(), having only one mandatory ar-
gument, the ranking dataset. By default a modelling is performed, and mentioning the
number of desired clusters leads to perform a cluster analysis, with selection of the num-
ber of clusters if several numbers are given. The analysis of two real datasets presented
in this paper allows to illustrate the possibilities of the package, and also constitutes a
user guide for the practitioners.

Appendix A. The big4 dataset

The big4 dataset3 (Table A.2) is composed of the rankings (in ordering notation)
of the �Big Four� of English football: Manchester United (quoted by 1), Liverpool (2),
Arsenal (3) and Chelsea (4), at the English football championship (Premier League) and
according to their UEFA coe�cients (statistics based on European competitions), from
1993 to 2013.

3Sources: Wikipedia website http://en.wikipedia.org/wiki/Big_Four_(English_football)

and UEFA website http://fr.uefa.com/memberassociations/uefarankings/club/index.html

16



year Premier League UEFA coe�cient
1993 (1,2,3,4) (1,2,3,4)
1994 (1,3,2,4) (1,3,2,4)
1995 (1,3,2,4) (1,2,4,3)
1996 (1,3,2,4) (1,2,3,4)
1997 (1,2,3,4) (1,3,2,4)
1998 (1,3,2,4) (3,1,2,4)
1999 (1,4,2,3) (1,3,4,2)
2000 (1,4,3,2) (1,3,2,4)
2001 (1,0,0,2) (1,4,2,3)
2002 (1,3,4,2) (3,2,1,4)
2003 (1,3,2,4) (1,3,4,2)
2004 (1,3,2,4) (3,4,1,2)
2005 (1,2,3,4) (4,3,1,2)
2006 (2,3,1,4) (4,1,2,3)
2007 (2,3,4,1) (1,4,2,3)
2008 (4,2,3,1) (1,4,3,2)
2009 (4,2,1,3) (1,2,4,3)
2010 (1,0,0,4) (4,1,3,2)
2011 (1,4,2,3) (1,4,3,2)
2012 (1,4,3,2) (1,3,4,2)
2013 (4,1,3,2) (1,4,3,2)

Table A.2: Rankings of the �Big Four" of English football: Manchester United (1), Liverpool (2),
Arsenal (3) and Chelsea (4), according to the Premier League results and to their UEFA coe�cients
from 1993 to 2013.
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