Package: RMixtComp 4.1.4
RMixtComp: Mixture Models with Heterogeneous and (Partially) Missing Data
Mixture Composer (Biernacki (2015) <https://inria.hal.science/hal-01253393v1>) is a project to perform clustering using mixture models with heterogeneous data and partially missing data. Mixture models are fitted using a SEM algorithm. It includes 8 models for real, categorical, counting, functional and ranking data.
Authors:
RMixtComp_4.1.4.tar.gz
RMixtComp_4.1.4.zip(r-4.5)RMixtComp_4.1.4.zip(r-4.4)RMixtComp_4.1.4.zip(r-4.3)
RMixtComp_4.1.4.tgz(r-4.4-any)RMixtComp_4.1.4.tgz(r-4.3-any)
RMixtComp_4.1.4.tar.gz(r-4.5-noble)RMixtComp_4.1.4.tar.gz(r-4.4-noble)
RMixtComp_4.1.4.tgz(r-4.4-emscripten)RMixtComp_4.1.4.tgz(r-4.3-emscripten)
RMixtComp.pdf |RMixtComp.html✨
RMixtComp/json (API)
NEWS
# Install 'RMixtComp' in R: |
install.packages('RMixtComp', repos = c('https://modal-inria.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/modal-inria/mixtcomp/issues
- CanadianWeather - Canadian average annual weather cycle
- prostate - Prostate Cancer Data
- simData - Simulated Heterogeneous data
- titanic - Titanic data set
clusteringcppheterogeneous-datamissing-datamixed-datamixture-modelstatistics
Last updated 6 months agofrom:096093723b. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win | NOTE | Nov 11 2024 |
R-4.5-linux | NOTE | Nov 11 2024 |
R-4.4-win | OK | Nov 11 2024 |
R-4.4-mac | OK | Nov 11 2024 |
R-4.3-win | OK | Nov 11 2024 |
R-4.3-mac | OK | Nov 11 2024 |
Exports:extractMixtCompObjectmixtCompLearnmixtCompPredictplotCritslopeHeuristic
Dependencies:askpassbase64encBHbslibcachemclicodetoolscolorspacecpp11crosstalkcurldata.tabledigestdoParalleldplyrevaluatefansifarverfastmapfontawesomeforeachfsgenericsggplot2gluegtablehighrhtmltoolshtmlwidgetshttrisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmeopensslpillarpkgconfigplotlypromisespurrrR6rappdirsRColorBrewerRcppRcppEigenrlangrmarkdownRMixtCompIORMixtCompUtilitiessassscalesstringistringrsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml
Data format used in RMixtComp
Rendered fromdataFormat.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2023-06-17
Started: 2019-10-14
Overview of MixtComp Object
Rendered frommixtCompObject.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2023-06-17
Started: 2019-10-14
Using ClusVis with RMixtComp Output for Visualization
Rendered fromClusVis.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2023-06-17
Started: 2020-03-20
Using RMixtComp with mixed and missing data
Rendered fromMixtComp.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2023-06-17
Started: 2020-03-20
Readme and manuals
Help Manual
Help page | Topics |
---|---|
RMixtComp | RMixtComp-package |
Canadian average annual weather cycle | CanadianWeather |
Extract a MixtComp object | extractMixtCompObject |
Learn and predict using RMixtComp | mixtCompLearn mixtCompPredict |
Plot of a _MixtCompLearn_ object | plot.MixtCompLearn |
Plot BIC and ICL | plotCrit |
Predict using RMixtComp | predict.MixtComp |
Print Values | print.MixtCompLearn |
Prostate Cancer Data | prostate |
Simulated Heterogeneous data | simData |
Slope heuristic | slopeHeuristic |
MixtCompLearn Object Summaries | summary.MixtCompLearn |
Titanic data set | titanic |